

<https://scienceforcowildlife.org>

Summary Report: Pitkin County Landfill and Electric Fencing **November 2025**

For decades, black bears have fed at the Pitkin County landfill, creating a persistent source of human–bear conflict. Electric fencing—proven effective across North America—is the most practical and humane solution to exclude bears from landfills and reduce lethal management outcomes. Despite mounting evidence, Pitkin County commissioners and Colorado Parks and Wildlife (CPW) have not committed to fencing either the current landfill or the new facility planned for completion in four years.

Current Situation

A semi-permanent fence around active landfill cells could probably be installed for under \$10,000, while a permanent fence at the new facility would cost about \$1 million, according to an estimate quoted in the Aspen Daily News. CPW officials, however, expressed skepticism about fencing efficacy, noting that the landfill represents only 5–10% of bear attractants in Pitkin County. County officials have delayed action, citing ongoing redevelopment and prioritizing other attractant sources such as residential trash, bird feeders, and fruit trees. The landfill is likely the single largest attractant in the county, drawing bears toward Highway 82 and contributing to vehicle collisions and bear mortality.

Evidence from Other Jurisdictions

Case studies from Canada and Alaska demonstrate that electric fencing works when properly installed and maintained.

- **Revelstoke, B.C.:** After fencing in 1994, bear intrusions dropped dramatically, and the number of bears killed fell from 62 in 1994 to just two by 2000–2001.
- **Whistler, B.C.:** Comprehensive fencing and barrier upgrades eliminated landfill access by 1999, shifting bears back to natural foods.

- **Mackenzie, B.C.:** Partial measures showed limited success, underscoring the need for fencing plus community attractant management.
- **Norman Wells, NWT:** A 1993 study documented near-total elimination of bear visits after fencing.
- **Montana and Wyoming:** Transfer stations and landfills fenced since the 1990s report consistent success. In Park County, WY, bear sightings at the landfill dropped sharply after fencing in 2017. Montana sites such as Ovando and Deer Lodge also report strong results, with fences preventing both bear access and ungulate exposure to chronic wasting disease.

These examples highlight that maintenance of electric fencing is critical: vegetation must be cleared from wires, energizers must be properly sized, and gates must remain closed. Failures in Fort Smith (NWT) and Chilliwack (B.C.) show that lapses in upkeep quickly lead to renewed bear access and mortality.

Colorado Context

Colorado lags behind other jurisdictions. A CORA request revealed that Pitkin County landfill is disproportionately represented in bear sighting calls. Between 2010 and 2023, **49 vehicle collisions with bears occurred in Pitkin County, with 22 crashes within two miles of the landfill.** This suggests the landfill is a major attractant drawing bears into dangerous proximity with highways. While one Colorado landfill (Bondad, near Durango) attempted fencing, its energizer was too weak and wire spacing inadequate, rendering it ineffective. By contrast, a properly designed fence around a Durango compost facility has successfully excluded bears.

Conclusion

Electric fencing is a proven, cost-effective, and humane solution to prevent bears from accessing landfills. Evidence from Canada, Alaska, Montana, and Wyoming demonstrates that fencing reduces bear mortality, shifts bears back to natural foods, and decreases human-bear conflict. Pitkin County's refusal to act represents a double standard: residents are required to secure attractants, yet the county's landfill remains open to bears. Installing fencing now at the current landfill and committing to permanent fencing at the future facility would reduce bear deaths, improve public safety, and make Pitkin County a model for Colorado.

.....